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Thermal fluctuations of electric field and solute density in biological cells
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Thermal fluctuations of ionic densities in a biological cell’'s electrolyte creates random electric fields and
solute density fluctuations. Using two common models of cellular components, the capacitor-resistor mem-
brane model and the uniform electrolyte cytoplasm model, we determine the RMS values of these random
variables and their frequency and wave number spectra by including independent variations of both anion and
cation densities. In the membrane, the inequality of ionic mobilities skews the frequency spectra to much lower
frequencies characteristic of solute transport, rather than current transport, through the membrane. In the
cytoplasm electrolyte, the electric field wave number spectrum declines approximately exponentially with
increasing wave number, leading to an algebraically declining spatial correlation function; the time correlation
function also declines algebraically. The cytoplasm solute density fluctuations behave normally, with expo-
nential spatial and algebraic temporal correlation functions. The RMS electric field of the cytoplasm is esti-
mated at~2x 10" V/m, about a factor of 1Dhigher than that of the membrari&1063-651X97)13109-9

PACS numbsgs): 87.22.Fy, 05.40tj, 41.20.Cv, 82.60.Lf

I. INTRODUCTION In both approaches the fluctuation of an electric variable
is related to the fluctuation of the net electric charge, which

The thermally induced fluctuations of electric potentialis taken to be the single independent thermodynamic vari-

and field in cells and cell membranes have been considereg@ple. But the cell and its environment are electrolytes, com-
significant factor in understanding the electrical environmenP0S€d of several chemically distinct anions and cations, each

of cellular processes. Two methods have been employed t%f which should be considered a separate independent ther-

define the statistical properties of electric variables Esti_modynamic variable. The electric charge fluctuations are
prop ) then coupled to those of all the electrolyte ions through the

mates of the electric field by Barngs] and Adair[2], and  onwriputory effects of all these variables to the free energy
the derivation of the membrane potential power spectrum by the cell system.

Procopio and Forne§3], rely on a model based upon a |n this paper we reconsider the two models of cell fluc-
capacitor-resistor element of an electric circuit. In thistuations, the capacitor-resistor and the continuum electrolyte,
model, the root-mean-squa(BMS) amplitudes of the elec- but explicitly include both anion and cation variability, for a
trical variables are expressed in terms of the electrical propscompletely dissociated equal valency solute. We choose as
erties of the cell components and their macroscopic dimenindependent variables the net charge and the solute density.
sions. A complementary view, developed by Oosdw e then determine the RMS value and frequency spectrum

considers the cell interior as a uniform electrolyte for which©f the electric field and solute density in the case of the

the RMS values are found to be independent of the cell di_capacitor—resistor model, and in addition the spatial spectra

mensions. These seemingy incompatble resus desenf " T SECrOVe model o e Spects e
some reconciliation. ’

The electrical circuit model, based upon classical quctua!yte case, the spatial correlz_;\tlon funct|ons_. -
. ! . . In Sec. Il below we consider the capacitor-resistor model
tion theory, equates the RMS electrical energy stored in ¢ e cell membrane, showing that the coupling of the anion
capacitor of volume/ to the thermal mean value 85T/2, 54 cation flows is reflected in a more complex frequency
from which it fozllovys that the mean square electric field of spectrum than previous treatments. This spectrum is domi-
the capacitor(E®), is equal tokgT/€eV, wheree is the elec-  nated by a slow mode arising from solute fluctuations in the
tric permittivity of the cell component. Thus the cell volume cytoplasm. The electrolyte analysis of Sec. Ill borrows from
is a determining factor ofE?). The power spectrum ¢E®)  Chandler and Andersdi] the wave number decomposition
may then be derived by applying the fluctuation-dissipatiornof the electric component of the free energy density of an
theorem[3]. electrolyte, leading to the wave number and frequency spec-
Oosawa derives the fluctuations of electrical variables ofra of the electric field. For the solute density fluctuations, a
an electrolyte considered as a continuous medium, determircutoff of the wave number spectrum is devised to satisfy the
ing the free energy density of the electrolyte after expandingptatistical requirements of the configuration integral of the
the electric field as a Fourier series in wave number spacé&olute considered as a perfect solution. In Sec. IV the various
The spatial correlation function of the electric field has aparameters of these relations are estimated for a typical cell
magnitude of~k, T«%/€ at a distance: 1, the inverse of the  Cytoplasm and membrane. Section V discusses the implica-
Debye-Huckel wave numbet of the eIectrontg. Thus the tions of this analysis and its findings.
effective capacitor volume of the electrolyte;d_s , Which is Il THE CELL AS A CAPACITOR-RESISTOR
much smaller than the cell volume by about five to ten orders
of magnitude, depending upon whether one is considering A biological cell may be modeled as a thermodynamic
the membrane or the cytoplasm. system consisting of a cytoplasm enclosed by the cell outer

1063-651X/97/563)/346(08)/$10.00 56 3460 © 1997 The American Physical Society



56 THERMAL FLUCTUATIONS OF ELECTRIC FIELD AND ... 3461

equal number of anions and catiori$ ,(=N_) each having
equal magnitude of electric chargee. With respect to fluc-
tuations of these variables, there are two degrees of freedom,
one for each ion type. We select as independent variables the
net electrical charg® and the average ion numbhl:

s, = Membrane
B

Extracellular
environment

Q=Ze(N,—-N_), Q=0,

R
..............

1 .
N=5 (N +N-),  Ne=N,=N_, 2.3

FIG. 1. A diagram of the biological cell model. Symbols denote . _
. . .. “where Ny is the equilibrium number of solute molecules.
the physical properties of the cytoplasm and membrane used in th\i/ith this choice,Q is entirely an electrical variable while

analysis. . . .
y 2N is the number of ions in the cytoplasm.

membrane, as in Fig. 1. Ignoring the various structures W€ tum next to the determination of the mean square
within the cytoplasm, such as the nucleus, mitochondria, etc¥alues of the fluctuationaQ and ANs of these extensive

we can consider the cytoplasm to be an electrolyte of univariables. In the vicinity of thermodynamic equilibrium, the
— cell free energy chang®A is second order in the increments

form solute concentratiom., having an electrical conduc- . .
s 9 of the independent variables:

tivity o and permittivitye.. The membrane surrounding the

cytoplasm has a thicknessthat is very small compared to 1/ A 1/ 5?A
the cell dimensionV /A, whereV, is the cell cytoplasm AA= = —)(AQ)2+—( —2)(ANS)2
volume andA its membrane area. Furthermore, the mem- 2\ 9Q? 2\ oN2

brane electrical conductivity,, is small enough compared . )
to o, that the potential difference within the cytoplasf, and their ensemble or time averaged mean square values are

is much smaller than that across the membraii,, :

, #A\ 7t
((AQ)%)=kgT _> ,
Ope ~LV/A)<1_ (2.2 07Q2
Obm och
: PA\ T
Thus we may regard the cytoplasm as one plate of a capaci- ((ANg?) = kBT( _) , (2.9
tor, having a uniform potential, and its extracellular fluid as aN§

the other, the membrane providing the dielectric medium be- _ o
tween the twdrelatively) conducting plates. The cell capaci- Wherekg is Boltzmann’s constant. The contribution of the

tanceC is thus chargeQ of the membrane capacitor to the free energy of the
cell is (Q)%/2C and that of N, ions in the cytoplasnifor
A \Y, fixed Q=0) is NkTIn(Ns/V,), so that
Czemﬁzfmzm, 2.2 s s/ Ve
" (Q)%)=keTC, (25
where €, is the permittivity andV,,, the volume of the cell —
membrane. " ((ANg)?)=NG. (2.6

The cell membrane permits the movement of ions an
molecules between the cytoplasm and the extracellular flui
It may be considered to be a semipermeable membrane wi —Q/hC, and the cytoplasm solute number densit
different permeabilities to different ions and molecules. ~™ ! ylop y

: o . Lo ne=Ng/V;:
More important, it is an active membrane that maintains a
difference in the concentrations of Nand K" between the KT ke
cytoplasm and the extracellular fluid, the former being rela- (AEp)?) = B _ T8
tively rich in K™ and the latter rich in N& This so-called h’C  €mYm
ion pumping mechanism is maintained by chemical reactions
within the membrang5], so that the cell may be regarded as Ne
a thermodynamic system in a dynamic steady state equilib- ((Ans)2>=v—- (2.8
rium. The ion pumping is accompanied by a potential differ- ¢
ence, called the resting potential, between the cytoplasm and
the extracellular fluid, of about 100 mV. In what follows, A. Transport of charge and solute

the equilibrium values of the thermodynamic variables, de- pegpite the inhomogeneity of both membrane and cyto-
noted by an overline, are those of this resting state. Th@jasm, we assume that the transport of charge and solute
change in value of these variables from the equilibrivest-  within them may be regarded as that of a uniform electrolyte.

ing) state is denoted by the prefix. _For either anions or cations, the volume flux may be given as
For simplicity, consider the cytoplasm electrolyte at equi-

librium to consist of a single completely dissociated salt of N.Ve=p+(N:Z.eE—kgTVn.), (2.9

gklternatively, these fluctuations may be expressed in terms
f the intensive variables, the membrane electric field

: 2.7)
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whereu is the ion mobility,n the ion number density, and
the ion drift velocity. Because we use charge and solute ((Ay)>y=kgT
number as independent variables, we define an electric cur-

rent densityj and, for symmetry, a solute “electric current” i ) . ]
densityj. as The time correlation functio€, ,{t'} of the random vari-

able A s is related to the spectral density bg]
Cadt'I=((Ay{th (Ay{t+t'})) (2.18

PA\ T e
&_zpz) J;) o} do. (2.17

j=e(n,Z,v,+n_Z v_),

js=Ze(n,v,+n_v_). (2.10
- . . =((Ap3cit't, (2.19
By combining Eqs(2.9) and(2.10 and using the following
parameters: where
M+ M- ®
a=—", 2.1 N= ! 2.2
bt (2.1 C{t'} fo Twlcoswt’ do (2.20
2nZ%e? i i i - i
(2= s (2.12 is the normalized time correlation function.

ekgT '’ For the special case of EQR.15 having a single degree
of freedom, we find

where « is the familiar Debye-Huckel wave number, Egs.

(2.10 assume the form N7
wl= , (2.21
ao Ry A2+ w?
j=oE—-—V(2Zeny), (2.13
€K C{t'}=exp(—At'). (2.22
o o We now proceed to derive the Langevin equation for the
Js=aoE——V(2Zeny). (2.14 biological cell, which has two degrees of freedom, for the

EK
extensive variablesAQ and ANg;. The conservation of

Note that, for equal anion and cation mobilities=0 and charge and ionic molecules requires that
the charge and solute curreitandjg are uncoupled.

d(AQ)
. . . +jA=0,
B. Frequency spectrum and time correlation function dt
The time or frequency spectrum of a fluctuating random d(2ZeAN,)
variableA ¢{t} may be found by forming the Langevin equa- ; +jA=0. (2.23
tion describing the time decay of the variable. For a single dt
degree of freedom, the Langevin equation fop{t} has the .
form By use of Eqs(2.13 and(2.14), these macroscopic conser-
vation equations may be transformed into the form
d
AP+ NAY=ATL}, (2.15 d(AQ)
T +QAQ+ anQ(2ZeAN,)=0,
where\ ! is the macroscopic decay time of fluctuations and
AW {t} is the excitation function of the fluctuations, a ran- d(2ZeANy)
dom function of time whose correlation function isSdunc- i TaAQ+ 7 (2ZeANy) =0, (2.24
tion. To determine the spectrum Afys, we square the time
transform of Eq.(2.15 to find where
(@*+\2)(A¥)?=(AT)?, Q=(ol€)n, (2.25
<(Alﬂ)2>:f0 (A'IZ)Z dw ﬂEA/hKZVC. (22@

The dimensionless parametgis the ratio of the capacitance
:(A{‘I',)Zfoo(w2+)\2)—l do, (2.16 of the membrane to that of the cytoplasm, and is much
0 smaller than unity for a typical cell, having a value of
~10"3 (see Table)l
where the tilde identifies the time transform and where For the special case of equal ionic mobilities=0), the
(AW)? is a function ofn but not ofw. We prefer to express Langevin equations fohkQ andAN; (and thusE andny) are
the right-hand side of the equations of the form of E;j16) not coupled and each has the form of E215. The corre-
in terms of a normalized spectral densifjw} whose inte- sponding normalized frequency spectra and correlation func-
gral is unity: tions are
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TABLE I. Typical properties of a biological cell.

d h A \% o ng K Q 7
(m) (m) (m?) (m®) (F/m) (Sim  (mol/m®  (m™%) (sh
Cytoplasm  10° 52x10° %  6.9x10 10 1.1 16 10° 1.6x10°
Membrane 2410° 3.1x101° 74x10® 24x10¥1 2x10°8 1.0 5.5<10° 8.3x10° 8.2x10*
20 290/ ~[Q7n(1—a?)] %, and that the fast mode of electric current
Telot= ——, %s{w}:ﬁ’ (2.27  transport makes a negligible contribution to the power spec-
0 to (7)) + o trum and time correlation function. In cell membranes
, , , , w_<u. [9]so that the factor (+ o?) in Egs.(2.33—(2.36
Celt’}=exp—Qt"), Gy t'}=exp(— 7Qt"). equals 4_/u. <1, making the correlation time constant
(228  much longer than Q) 1.

For the solute fluctuations, the bandwidth of the frequenq{h
spectrum ¢ Q1) is much less than that for the electric field
fluctuations ¢-()), and the corresponding correlation time

([7Q]1~Y) is much longer.

For the general case in whiah+ 0, the fluxes of charge
and solute are coupled and the Langevin equation takes the

form

d? d ) )
@-Fﬂ(l—i—n) t—l—nﬂ (1—a”) |[Ay=AT.

dt
(2.29

The normalized frequency spectrum and correlation function

identical for both electric field and ionic number density,

_(2m)p(1+ p)(1-a®)Q®

2.
Rel (0?+ 02) (0’ +wd) (230
M wWWo /exr(—wlt') . exq_wzt,)
ar'y= wZ_wl\ w1 w32 ’
(2.3)
where
Q 2 2
01=5[(1+7)+ V(1= 7)"+4ay],
Q 2 2
wp=5 [(1+7) = V(1= n)"+4an]. (2.32

Becausen<1, we may approximate the relatio&30—
(2.32 by neglecting terms of ordes? compared to unity,
finding

w,=Q(1+a?y), (2.33

w,=Q7n(1—a?), (2.39
(2lm)p(1—a?)Q

A a0l (2:39

C{t"V=exd —Qp(1—a®t'], (2.36

If the cell membrane were impervious to aniops (=0),

ere would be but one degree of freedom, for the cations,
Eqg.(2.13 would becomg= ¢E, and the frequency spectrum
Te{w} and correlation functiorCe{t’'} would be those of
Egs.(2.27 and(2.28. In this degenerate case, there would
be no fluctuations in the solute density.

Ill. FLUCTUATIONS IN A UNIFORM ELECTROLYTE

In contrast to the cell as a capacitor, having fluctuations in
the extensive properti€d andNg, we now consider an elec-
trolyte of infinite extent for which the intensive properties
and ng will fluctuate about the mean values of 0 and,
respectively. We might expect that the relationships of Eqgs.

ar®2.7) and (2.8) would apply if we choose for the character-

istic volumeV the appropriate microscopic volume within
which these fluctuating quantities would be correlated. Un-
like the extensive volum¥, these microscopic volumes de-
pend upon intensive properties. For electric charge fluctua-
tions, the characteristic volume would ke 2 so that

3
(AEyy~ BT

€

(3.9

while the appropriate volume for solute fluctuations would
be the volume per solute moleculeyd) ~*,

((Ang?)~ng/(ng~*~nZ. (32
The exact proportionalities of Eg&.1) and(3.2) need to be
determined from thermodynamical or statistical mechanical
arguments.

Before proceeding, we recognize that the fluctuations of
the electric field and solute concentration will be correlated
in both space and time. Denoting the normalized spectral
density of these fluctuations in wave numlgsragnitudek)
and frequency space I8t{k, w}, we may expect the form of
Eq. (3.1), for example, to be

(AER) ~(AEP) [ [ sclk.ojdkdo, 33

where((AE)?), is the exact value of(AE)?) determined
from thermodynamic considerations, which we expect to be

provided thate®> 7. It is clear that the coupled frequency of orderkgT«>/e, and the double integral has the value of
spectrum and correlation function are dominated by the slownity. If the double integral is first integrated e the re-

mode of solute transport whose decay time

issulting integrand is a function d&f denoted byKg{k}:
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-1
In(nxK/3)
220

FIG. 3. Contours of the normalized wave-number—frequency
spectrum @xQ/3) Sg{w, «} as a function of the reduced fre-
quencyw/Q and wave numbek/k for a?<1.

FIG. 2. A plot of the normalized wave number spectrifig{ k}
of the electric field as a function & «.

jwfmSE{k,w}d KOw= JxICE{k}d K (3.9 The Langevin equation for the fluctuating variabieand
0 Jo 0 ns may be derived by applying the conservation equations

for electric and solute charge:
Because the integration an is equivalent to ensemble av-

eraging, the normalized wave number spectral derigitik} . d(eV-E)
is a themodynamic quantity and not dependent upon any Vit TR
dissipative property of the electrolyte.
We begin first with the fluctuations of the electric field. a(2Zen)
We adopt the technique of Chandler and Anderisdnwho V-jst — —0

determined the electrical component of the free energy per
unit volumea of an electrolyte as a rapidly converging series ) )
of terms corresponding to cluster integrals. For the particulaf the transport equation@.13 and (2.14. The reszultlgg
case of zero hard core ion radius, and employing only thd-8ngevin equation has the form of £@.29 with »=k*/x*.
first term of the series, the absolute valueadé kgT«3/12r.  1he  normalized  wave-number—frequency  spectrum
Setting this equal to the electric field energy per unit volumeSe{K, @} of Eq. (3.3 becomegsee Eq/(2.30]
€((AE)?)/2, we have

(2/7) (K% k?)[ 1+ (K? k) ](1— a?) Q3

Selk,w}=Kelk}

3

_kBTK o ( 2+ 2)( 2+ 2) !
((AE)?)= e fo Kelk}dk, (3.5 ot o) (0t 39
K2 2 where
ICE{k}:(S/wK)(l——ZIn 1+—2 ) (3.6
K k

w1=%{[1+(k2/;<2)]+ V[1= (K7 &%) 17+ 4a*(K% %)},
The wave number spectrufdz{k} of Chandler and Ander-
son, EQ.(3.6), is plotted in Fig. 2. Note that most of the
energy is contained within the small wave number region of ,,,— 111+ (k%/x2)]— \[1— (K% «?) 2+ 4a?(K¥ &%)}
the spectrumk<k. This is in contrast to the spectrum of 2
Oosawa[4], for which gxk?/ «? for small wave number, (3.10
compared withkCgc 1—k?/«? in Eq. (3.6) and Fig. 2.

The spatial correlation function of the electric field may Contours —of  the  wave-number—frequency — spectrum
be found from the transform d€g{k}. To simplify this cal-  Setk, @} are plotted in Fig. 3 for the case of weak coupling,
culation, we approximate the wave number spectrum of Fig® <1: i-e., nearly equal ion mobilities. The spectral inten-

2 by a simple exponential: sity is greatest for 2small values af/ Q) anq ki k. _
For the case o&“<1, we may determine the time corre-
Ke{Kt = (3lmx)exp(— (3/m)[k/ k]) (3.7)  lation function Ce{t’} by noting that w;=Q and

w,=(k/k)?Q and that as a consequence of E2.31) the

that differs very little from Eq(3.6) (see Fig. 2 The corre- time transform ofSe{k, w} is

sponding normalized spatial correlation function is
j Se{k, wicoswt’ dw=(3/mr)exd — (3/7)(k/«)]
0

1
(3.8

Celrl=——
elr’y 1+ (mxr'[3)2 xexd — (k/x)2Qt'], (3.11

This geometric decline ofz with «r’ is slower than the where we have used the approximation of 7). Integrat-
exponential decline of Oosaw4]. ing on the wave numbek we find the time correlation
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from which we obtain the normalized spatial correlation

Ceft'}= fo fo Sefk,w}coswt’dwdk function Cg{r'} from the transform ofC({k}:

3 3 |2 3 Clr'y=[1-2(r"2/%lexp —[r'1%14/?). (3.18
= ex erfdl ———
27 Qt’ p( 27 Qt’ ) (Zw\/ﬂt’) Repeating the steps that led to £§.12, we find the time
(3.12 correlation function for the solute density fluctuations:
-3/2
~1_ 2 ro; I < , Qt’
3 “
N 270t T or=1. (3.13 Like the correlation function of the electric fiel&qg. (3.13)],

CS{t'} decays algebraically, as’) 32
Note that the time correlation function of the electric field
decays algebraically as') ~ 2 rather than exponentially, as
does the spatial correlation functipBEg. (3.8)].

The mean square fluctuation of the solute density, ) ) ) ]
<(Ans)2>, is determined by evaluating the contributions to Tw_o glectrlcal properties that affect the fluctuatlons_ in
the change in free energy densitfrom perturbations to the electric field and solute density of a cell are the electrical
number density; of ions in the ion configuration space. We conductivity o and the electric permittivitg (or the relative

IV. ELECTRICAL PROPERTIES OF THE CYTOPLASM
AND CELL MEMBRANE

assume a small perturbatiof=An,/n; that will be ex-

permittivity e,,= €/ €9, Whereegg is the vacuum permittivity

panded as a Fourier series in configuration space. ConsideftSummary of the empirical values of ande, measured in

ing the solute ions as a perfect solutid], the free energy
per unit volume is increased by the perturbation

a{&l=ni(1+ &keT[INN;(1+ &)~ F{T}]=a{0} + nikg T2
(3.19

since the mean value &fis zero.

bulk samples of muscle, lung, liver, fat, bone, and whole
blood, as a function of frequendy= w/27 over the range 10
Hz <f<10 MHz, is given by Foster and Schwh0].

For all of these samples, the electrical conductivity varies
only slightly with f, having values betweer 10”2 S/m for
bone and 0.7 S/m for blood. The blood conductivity is about
the same as that of an electrolyte having &4#Na' ion

In expanding the perturbation in a Fourier series in condensity of 100umol/l, a typical value for cytoplasm and
figuration space, we must limit the maximum wave numberextracellular fluid. Lower values for other samples reflect

k, to a value such thamikﬁ’}l, S0 as to ensure that the
occupation number of a cell of volurﬂe;3 is large, as re-

their more complex structure but indicate that the origin of
the conductivity is the presence of an electrolyte suffusing

quired by the Boltzmann statistics we use for the perfecthe sample. The insensitivity to frequency in the measured

solution. We shall call this volume™, and note that it is

range also indicates the electrolytic nature of the conduction

necessarily much larger than the volume per solute moleculgrocess.

Excluding a volume”2 from the configuration space of each

On the other hand, the relative permittiviey, shows a

molecule makes an additive contribution to the free energynarked dependency updn declining from~ 10" at 10 Hz
density of a perfect system ofkgT/3, as in the case of a to ~10°—10* at 10 MHz, but remaining unchanging at

perfect gas where® would be the second virial coefficient

higher frequencies in some cases. These large valueg,of

[8]. For our ionic solution, the increment in free energy den-at low frequencies are the result of heterogeneities in the

sity is therefore

Aa=nZkgT/ 3¢ (3.19
Comparing with Eq(2.4), we can solve for the mean value
of &2

<§2>: 1/!’15/3,

((Ang)®y=ng//3, (3.1
where we have used;=2n,. The condition thahy/3>1
ensures thag<1.

We now construct a simple wave number spectilgk}
of ((Ang)?) by requiring thatCs be proportional tok? for

tissue structure and the presence of cell membranes of very
high electrical resistance, giving rise to a dielectric loss
(called the Maxwell Wagner logsn bulk tissue samples
[11]. On the scale of a single cell, however, the electric per-
mittivity and conductivity are independent of frequency,
over the range of frequency of consequence to the evaluation
of the correlation function.

Measurement of some eukaryotic cell membrane proper-
ties listed by Pethig11] gives a median membrane capaci-
tance of C/A=1uFlcn? and resistance  of
RA=1.2x10* Q cn?. Their product,RC, is the time con-
stante,,/o,=1.2x10 3 s. (This value is comparable to the
response time of the cell potential to large disturbances, as in
an action potentigl5].) The relative permittivity of a mem-
brane should be about the same as that of protein, its princi-

k/<1 so that each mode contributes equally to the spectrglal constituent, or &) »=2.7[11]. The corresponding val-

energy density, but tha{k}— 0 rapidly fork/>1. A suit-
able normalized spectrum would be

K{k}= (4731 m)k2exp —k2/?) (3.17

ues of membrane permittivity and conductivity are thus
€m=2.4x10 ! F/m ando,=2%x10 8 S/m, and the mem-
brane thicknesd=¢,A/C=2.4 nm.

For the cell cytoplasm, we will use a blood conductivity
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TABLE Il. RMS electric field values.

(kgT/ V)2 (k, T3/67r€) Y2 (kp T k3167 €) Y3l VY3)
(V/m) (V/m) (V/m)
Cytoplasm 1.K107 1.8x 10 2.2x10°
Membrane 1.610% 4.0x 10 7.6x10°

of o,=1.1 S/m. Even though the cytoplasm structure is nofrequency spectrum of the electric field but not its RMS

homogeneous, the low proportion of laay, protein justifies
the use of a relative permittivity of watet,,=78 for the
cytoplasm, ore,=6.9x 10719 F/m. The corresponding time
constant ise./o.=6.3x10 1%s, much smaller than that for
the membrane.
A typical solute density in the cytoplasm is

ng=100 mol/n¥. At a temperature of 310 K the correspond-

ing cytoplasm Debye length isc‘1=1.0 nm, which is much
less than a typical cell diametdrof 10 um. Assuming that

value. This solute motion is much slower than the exchange
of charge since the anions are less mobile than the cations
within the membrane. The ions respond both to the electric
field and the chemical potential difference across the mem-
brane. The resulting electric field frequency spectrum and
time correlation function, Eqg2.35 and (2.36), are domi-
nated by this slower process, having a characteristic fre-
quency of the order ofpQ,~1s 1.

Other treatments of the frequency spectrum, such as that

the conduction channels of the membrane constitute 1% dy Procopio and Forng$], assume zero anion mobility, and

the membrane area, as they do in gap junctifi, the
average membrane ion density is aboyt1 mol/n? and
the membrane Debye length ig,'=1.8 nm, comparable to
the membrane thickness.

If we assume that the cell is a sphere of diameteg.h@)
then the cell volumé/.=5.2x 10 1® m? and the membrane
areaA=3.1x10"1°m?,

find a spectrum characterized by the frequefigy, as in Eq.
(2.27. While this may be a physiologically interesting por-
tion of the spectrum, there is little energy content in this
region as long as the anion mobility is honzero.

The model of Sec. Il assumes that the electric potential
and solute density are uniform within the cytoplasm and in
the extracellular environment, differences in these quantities

These typical values of cell properties are summarized ifPccurring only across the membrane. For uniformityngfn

Table I, together with the characteristic frequeiityand the
parametery of Egs. (2.25 and (2.26. The constraint that

the cytoplasm, it is necessary that the time for ion pairs to
diffuse throughout the cytoplasi?®/D (whereD= /x>

applies to Eqs(2.33—(2.36) is amply satisfied by the value is the solute diffusivity, is much shorter than the character-
of 7 listed in Table I. istic time (7€,,) 1. Employing the values of Table I, the

In Table Il we list several values of the RMS electric field dimensionless time ratiog(Qy, /) k2V5*=3x 1072, sat-
for the membrane and cytoplasm. In the first column, we usésfies this condition.
the value for a capacitor of volumé, Eq. (2.7), applied to The membrane electric field and the cytoplasm solute
both cytoplasm and membrane. In the second column, thBuctuations each possess a time-averaged free energy of
electrolyte value of Eq3.5) is used. In the third column, we KgT/2. The RMS solute concentration fluctuations,

calculate the RMS value of the electric field correlation func—,/«A ns)2>/n_sz 1/‘/n_ch, calculated from the values of

tion evaluated for the distanag =V3, the maximum di-

Table I, is 2.3< 10 7. The ratio of the membrane RMS elec-

mension of the cytoplasm or the membrane, as determinegic field to that of the resting potential of 100 mVh is

by Eq.(3.8).

4x10 4. Thus the fluctuating quantities are small compared

Considering the cytoplasm or membrane as a uniformo their equilibrium state values.

electrolyte, the value df{ Ang)?) depends upon the choice of

In the uniform electrolyte of the cytoplasm, the RMS

the length scale” needed to ensure the applicability of electric field of Eq(3.5) has the estimated value of X80’

Boltzmann’s statistics. If we choosay3=10, then

V/m (see Table I}, much greater than the value for the mem-

V((Ang)%)=ng/10 for both cytoplasm and membrane. This brane, but comparable to the resting electric field in the

is much greater than the classical value\of,/V for fluc-

tuations averaged over the entire voluWMegas given in Eq.
(2.8). The characteristic frequenc§)/(«/)? for the time
correlation function of EQ.(3.19 is calculated to be
1.54<10 % Q and 2.36<10 % Q) for the cytoplasm and
membrane, respectively.

V. DISCUSSION

membrane. The average electric field enerdiib/2 in each
volume 37«2 of the cytoplasm. If this energy were spread
over the entire volume of the cytoplasm, the RMS field
would be considerably legsee column one of Table)lIBut

the surprising result is that the RMS value of the spatial
correlation function of the cytoplasm electric field for a sepa-
ration distanc&/Y3, the dimension of the cytoplasm, is esti-
mated in Table Il to be 2:210° V/m. Thus there is substan-
tial correlation of the electric field fluctuations throughout

The capacitor-resistor model of the cell membrane ighe cytoplasm, a testimony to the effect of the long range

widely used and the RMS electric field of E.7), esti-
mated as 1.8 10* V/m in Table Il, is securely based. What

Coulomb forces acting on the ions.
We have noted that the correlation function of the electric

is different about the analysis of Sec. Il is the incorporationfield, as derived by Oosawpd], decays exponentially as
of the solute fluctuations in the cytoplasm due to the moveexp{—«r’}, in contrast to the algebraic decay of H§.8).
ment of ion pairs across the membrane, which affects tha@his difference stems from the form of the wave number
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spectrumiC{k}, which in Sec. Il is a declining function of tially. The time correlation function of these solute density
k/x (see Fig. 2 as given by Chandler and Andersfn], fluctuations, which decays algebraically, is characterized by
rather than the increasing function assumed by Oosawa. line frequency./«2/?=5.3x10" s~ 1.
the latter case, this leads to an infinite value (&F). The relations discussed above and treated in earlier sec-
Assuming comparable ion mobilities in the cytoplasmtions of this assume that the cytoplasm and membrane have
electrolyte, the frequency spectrum and time correlatioruniform, isotropic properties , e,x, etc). While this is
function of the electric field are characterized by the fre-clearly not the case for the membrane, it is reasonably so for
quencyQ~1x10° s™*, the cytoplasm. Nevertheless, for the guidance of the reader,
The solute _density fluctuations are substantial Within ave have listed the uniform-property values of the electric
volume /%, which we assume to be an order of magnitudefie|q for both membrane and cytoplasm in Table Il, for the

larger than the volume per solute molecule. But these fluCyyg models of capacitor-resistor and uniform electrolyte,
tuations are essentially uncorrelated over larger distances bgy., \where they perhaps do not apply reliably

cause the solute density correlation function decays exponen-
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