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Thermal fluctuations of electric field and solute density in biological cells

J. A. Fay
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02193

~Received 23 May 1996; revised manuscript received 2 June 1997!

Thermal fluctuations of ionic densities in a biological cell’s electrolyte creates random electric fields and
solute density fluctuations. Using two common models of cellular components, the capacitor-resistor mem-
brane model and the uniform electrolyte cytoplasm model, we determine the RMS values of these random
variables and their frequency and wave number spectra by including independent variations of both anion and
cation densities. In the membrane, the inequality of ionic mobilities skews the frequency spectra to much lower
frequencies characteristic of solute transport, rather than current transport, through the membrane. In the
cytoplasm electrolyte, the electric field wave number spectrum declines approximately exponentially with
increasing wave number, leading to an algebraically declining spatial correlation function; the time correlation
function also declines algebraically. The cytoplasm solute density fluctuations behave normally, with expo-
nential spatial and algebraic temporal correlation functions. The RMS electric field of the cytoplasm is esti-
mated at;23107 V/m, about a factor of 103 higher than that of the membrane.@S1063-651X~97!13109-9#

PACS number~s!: 87.22.Fy, 05.40.1j, 41.20.Cv, 82.60.Lf
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I. INTRODUCTION

The thermally induced fluctuations of electric potent
and field in cells and cell membranes have been consider
significant factor in understanding the electrical environm
of cellular processes. Two methods have been employe
define the statistical properties of electric variables. E
mates of the electric field by Barnes@1# and Adair@2#, and
the derivation of the membrane potential power spectrum
Procopio and Fornes@3#, rely on a model based upon
capacitor-resistor element of an electric circuit. In th
model, the root-mean-square~RMS! amplitudes of the elec
trical variables are expressed in terms of the electrical pr
erties of the cell components and their macroscopic dim
sions. A complementary view, developed by Oosawa@4#,
considers the cell interior as a uniform electrolyte for whi
the RMS values are found to be independent of the cell
mensions. These seemingly incompatible results des
some reconciliation.

The electrical circuit model, based upon classical fluct
tion theory, equates the RMS electrical energy stored i
capacitor of volumeV to the thermal mean value ofkBT/2,
from which it follows that the mean square electric field
the capacitor,̂E2&, is equal tokBT/eV, wheree is the elec-
tric permittivity of the cell component. Thus the cell volum
is a determining factor of̂E2&. The power spectrum of^E2&
may then be derived by applying the fluctuation-dissipat
theorem@3#.

Oosawa derives the fluctuations of electrical variables
an electrolyte considered as a continuous medium, deter
ing the free energy density of the electrolyte after expand
the electric field as a Fourier series in wave number sp
The spatial correlation function of the electric field has
magnitude of;kbTk3/e at a distancek21, the inverse of the
Debye-Huckel wave numberk of the electrolyte. Thus the
effective capacitor volume of the electrolyte isk23, which is
much smaller than the cell volume by about five to ten ord
of magnitude, depending upon whether one is conside
the membrane or the cytoplasm.
561063-651X/97/56~3!/3460~8!/$10.00
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In both approaches the fluctuation of an electric varia
is related to the fluctuation of the net electric charge, wh
is taken to be the single independent thermodynamic v
able. But the cell and its environment are electrolytes, co
posed of several chemically distinct anions and cations, e
of which should be considered a separate independent
modynamic variable. The electric charge fluctuations
then coupled to those of all the electrolyte ions through
contributory effects of all these variables to the free ene
of the cell system.

In this paper we reconsider the two models of cell flu
tuations, the capacitor-resistor and the continuum electrol
but explicitly include both anion and cation variability, for
completely dissociated equal valency solute. We choose
independent variables the net charge and the solute den
We then determine the RMS value and frequency spect
of the electric field and solute density in the case of
capacitor-resistor model, and in addition the spatial spe
for the continuum electrolyte model. From these spectra
then derive the time correlation functions, and in the elect
lyte case, the spatial correlation functions.

In Sec. II below we consider the capacitor-resistor mo
of the cell membrane, showing that the coupling of the an
and cation flows is reflected in a more complex frequen
spectrum than previous treatments. This spectrum is do
nated by a slow mode arising from solute fluctuations in
cytoplasm. The electrolyte analysis of Sec. III borrows fro
Chandler and Anderson@7# the wave number decompositio
of the electric component of the free energy density of
electrolyte, leading to the wave number and frequency sp
tra of the electric field. For the solute density fluctuations
cutoff of the wave number spectrum is devised to satisfy
statistical requirements of the configuration integral of t
solute considered as a perfect solution. In Sec. IV the vari
parameters of these relations are estimated for a typical
cytoplasm and membrane. Section V discusses the imp
tions of this analysis and its findings.

II. THE CELL AS A CAPACITOR-RESISTOR

A biological cell may be modeled as a thermodynam
system consisting of a cytoplasm enclosed by the cell o
3460 © 1997 The American Physical Society
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56 3461THERMAL FLUCTUATIONS OF ELECTRIC FIELD AND . . .
membrane, as in Fig. 1. Ignoring the various structu
within the cytoplasm, such as the nucleus, mitochondria, e
we can consider the cytoplasm to be an electrolyte of u
form solute concentrationn̄ s , having an electrical conduc
tivity sc and permittivityec . The membrane surrounding th
cytoplasm has a thicknessh that is very small compared t
the cell dimensionVc /A, where Vc is the cell cytoplasm
volume andA its membrane area. Furthermore, the me
brane electrical conductivitysm is small enough compare
to sc that the potential difference within the cytoplasmdfc
is much smaller than that across the membrane,dfm :

dfc

dfm
;

sm~V/A!

sch
!1. ~2.1!

Thus we may regard the cytoplasm as one plate of a cap
tor, having a uniform potential, and its extracellular fluid
the other, the membrane providing the dielectric medium
tween the two~relatively! conducting plates. The cell capac
tanceC is thus

C5em

A

h
5

emVm

h2
, ~2.2!

whereem is the permittivity andVm the volume of the cell
membrane.

The cell membrane permits the movement of ions a
molecules between the cytoplasm and the extracellular fl
It may be considered to be a semipermeable membrane
different permeabilities to different ions and molecule
More important, it is an active membrane that maintain
difference in the concentrations of Na1 and K1 between the
cytoplasm and the extracellular fluid, the former being re
tively rich in K1 and the latter rich in Na1. This so-called
ion pumping mechanism is maintained by chemical reacti
within the membrane@5#, so that the cell may be regarded
a thermodynamic system in a dynamic steady state equ
rium. The ion pumping is accompanied by a potential diff
ence, called the resting potential, between the cytoplasm
the extracellular fluid, of about2100 mV. In what follows,
the equilibrium values of the thermodynamic variables,
noted by an overline, are those of this resting state.
change in value of these variables from the equilibrium~rest-
ing! state is denoted by the prefixD.

For simplicity, consider the cytoplasm electrolyte at eq
librium to consist of a single completely dissociated salt

FIG. 1. A diagram of the biological cell model. Symbols deno
the physical properties of the cytoplasm and membrane used in
analysis.
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equal number of anions and cations (N̄15N̄2) each having
equal magnitude of electric chargeZe. With respect to fluc-
tuations of these variables, there are two degrees of freed
one for each ion type. We select as independent variables
net electrical chargeQ and the average ion numberNs :

Q5Ze~N12N2!, Q̄50,

Ns5
1

2
~N11N2!, N̄s5N̄15N̄2 , ~2.3!

where N̄s is the equilibrium number of solute molecule
With this choice,Q is entirely an electrical variable while
2Ns is the number of ions in the cytoplasm.

We turn next to the determination of the mean squ
values of the fluctuationsDQ and DNs of these extensive
variables. In the vicinity of thermodynamic equilibrium, th
cell free energy changeDA is second order in the incremen
of the independent variables:

DA5
1

2S ]2A

]Q2D ~DQ!21
1

2S ]2A

]Ns
2D ~DNs!

2

and their ensemble or time averaged mean square value

^~DQ!2&5kBTS ]2A

]Q2D 21

,

^~DNs!
2&5kBTS ]2A

]Ns
2D 21

, ~2.4!

wherekB is Boltzmann’s constant. The contribution of th
chargeQ of the membrane capacitor to the free energy of
cell is (Q)2/2C and that of 2Ns ions in the cytoplasm~for
fixed Q50) is NskTln(Ns/Vc), so that

^~DQ!2&5kBTC, ~2.5!

^~DNs!
2&5N̄s . ~2.6!

Alternatively, these fluctuations may be expressed in te
of the intensive variables, the membrane electric fi
Em[Q/hC, and the cytoplasm solute number dens
ns[Ns /Vc :

^~DEm!2&5
kBT

h2C
5

kBT

emVm
, ~2.7!

^~Dns!
2&5

n̄ s

Vc
. ~2.8!

A. Transport of charge and solute

Despite the inhomogeneity of both membrane and cy
plasm, we assume that the transport of charge and so
within them may be regarded as that of a uniform electroly
For either anions or cations, the volume flux may be given

n6v65m6~n6Z6eE2kBT¹n6!, ~2.9!

is
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3462 56J. A. FAY
wherem is the ion mobility,n the ion number density, andv
the ion drift velocity. Because we use charge and so
number as independent variables, we define an electric
rent densityj and, for symmetry, a solute ‘‘electric current
densityj s as

j[e~n1Z1v11n2Z2v2!,

j s[Ze~n1v11n2v2!. ~2.10!

By combining Eqs.~2.9! and~2.10! and using the following
parameters:

a[
m12m2

m11m2
, ~2.11!

k2[
2nsZ

2e2

ekBT
, ~2.12!

where k is the familiar Debye-Huckel wave number, Eq
~2.10! assume the form

j5sE2
as

ek2
¹~2Zens!, ~2.13!

j s5asE2
s

ek2
¹~2Zens!. ~2.14!

Note that, for equal anion and cation mobilities,a50 and
the charge and solute currentsj and j s are uncoupled.

B. Frequency spectrum and time correlation function

The time or frequency spectrum of a fluctuating rand
variableDc$t% may be found by forming the Langevin equ
tion describing the time decay of the variable. For a sin
degree of freedom, the Langevin equation forDc$t% has the
form

d

dt
~Dc!1lDc5DC$t%, ~2.15!

wherel21 is the macroscopic decay time of fluctuations a
DC$t% is the excitation function of the fluctuations, a ra
dom function of time whose correlation function is ad func-
tion. To determine the spectrum ofDc, we square the time
transform of Eq.~2.15! to find

~v21l2!~Dc̃ !25~DC̃!2,

^~Dc!2&5E
0

`

~Dc̃!2 dv

5~DC̃!2E
0

`

~v21l2!21 dv, ~2.16!

where the tilde identifies the time transform and whe
(DC̃)2 is a function ofl but not ofv. We prefer to express
the right-hand side of the equations of the form of Eq.~2.16!
in terms of a normalized spectral densityT$v% whose inte-
gral is unity:
te
r-

e

e

^~Dc!2&[kBTS ]2A

]c2D 21E
0

`

T$v% dv. ~2.17!

The time correlation functionCDc$t8% of the random vari-
ableDc is related to the spectral density by@6#

CDc$t8%[^~Dc$t%!~Dc$t1t8%!& ~2.18!

5^~Dc!2&C$t8%, ~2.19!

where

C$t8%[E
0

`

T$v%cosvt8 dv ~2.20!

is the normalized time correlation function.
For the special case of Eq.~2.15! having a single degree

of freedom, we find

T$v%5
2l/p

l21v2
, ~2.21!

C$t8%5exp~2lt8!. ~2.22!

We now proceed to derive the Langevin equation for
biological cell, which has two degrees of freedom, for t
extensive variablesDQ and DNs . The conservation of
charge and ionic molecules requires that

d~DQ!

dt
1 jA50,

d~2ZeDNs!

dt
1 j sA50. ~2.23!

By use of Eqs.~2.13! and ~2.14!, these macroscopic conse
vation equations may be transformed into the form

d~DQ!

dt
1VDQ1ahV~2ZeDNs!50,

d~2ZeDNs!

dt
1aVDQ1hV~2ZeDNs!50, ~2.24!

where

V[~s/e!m , ~2.25!

h[A/hk2Vc . ~2.26!

The dimensionless parameterh is the ratio of the capacitanc
of the membrane to that of the cytoplasm, and is mu
smaller than unity for a typical cell, having a value
;1023 ~see Table I!.

For the special case of equal ionic mobilities (a50), the
Langevin equations forDQ andDNs ~and thusE andns) are
not coupled and each has the form of Eq.~2.15!. The corre-
sponding normalized frequency spectra and correlation fu
tions are
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TABLE I. Typical properties of a biological cell.

d h A V e s ns k V h
~m! ~m! ~m2) (m3) ~F/m! ~S/m! ~mol/m3) (m21) (s21)

Cytoplasm 1025 5.2310216 6.9310210 1.1 102 109 1.63109

Membrane 2.431029 3.1310210 7.4310219 2.4310211 231028 1.0 5.53108 8.33102 8.231024
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TE$v%5
2V/p

V21v2
, Tns

$v%5
2hV/p

~hV!21v2
, ~2.27!

CE$t8%5exp~2Vt8!, Cns
$t8%5exp~2hVt8!.

~2.28!

For the solute fluctuations, the bandwidth of the frequen
spectrum (;hV) is much less than that for the electric fie
fluctuations (;V), and the corresponding correlation tim
(@hV#21) is much longer.

For the general case in whichaÞ0, the fluxes of charge
and solute are coupled and the Langevin equation takes
form

S d2

dt2
1V~11h!

d

dt
1hV2~12a2!D Dc5DC.

~2.29!

The normalized frequency spectrum and correlation funct
identical for both electric field and ionic number density, a

T$v%5
~2/p!h~11h!~12a2!V3

~v21v1
2!~v21v2

2!
, ~2.30!

C$t8%5
v1v2

v22v1
S exp~2v1t8!

v1
2

exp~2v2t8!

v2
D ,

~2.31!

where

v15
V

2
@~11h!1A~12h!214a2h#,

v25
V

2
@~11h!2A~12h!214a2h#. ~2.32!

Becauseh!1, we may approximate the relations~2.30!–
~2.32! by neglecting terms of orderh2 compared to unity,
finding

v1.V~11a2h!, ~2.33!

v2.Vh~12a2!, ~2.34!

T$v%.
~2/p!h~12a2!V

v21@h~12a2!V#2
, ~2.35!

C$t8%.exp@2Vh~12a2!t8#, ~2.36!

provided thata2@h. It is clear that the coupled frequenc
spectrum and correlation function are dominated by the s
mode of solute transport whose decay time
y

he

n,

w

;@Vh(12a2)#21, and that the fast mode of electric curre
transport makes a negligible contribution to the power sp
trum and time correlation function. In cell membran
m2!m1 @9# so that the factor (12a2) in Eqs.~2.33!–~2.36!
equals 4m2 /m1!1, making the correlation time constan
much longer than (hV)21.

If the cell membrane were impervious to anions (m250),
there would be but one degree of freedom, for the catio
Eq. ~2.13! would becomej5sE, and the frequency spectrum
TE$v% and correlation functionCE$t8% would be those of
Eqs. ~2.27! and ~2.28!. In this degenerate case, there wou
be no fluctuations in the solute density.

III. FLUCTUATIONS IN A UNIFORM ELECTROLYTE

In contrast to the cell as a capacitor, having fluctuations
the extensive propertiesQ andNs , we now consider an elec
trolyte of infinite extent for which the intensive propertiesE

and ns will fluctuate about the mean values of 0 andn̄ s ,
respectively. We might expect that the relationships of E
~2.7! and ~2.8! would apply if we choose for the characte
istic volume V the appropriate microscopic volume withi
which these fluctuating quantities would be correlated. U
like the extensive volumeV, these microscopic volumes de
pend upon intensive properties. For electric charge fluct
tions, the characteristic volume would bek23 so that

^~DE!2&;
kBTk3

e
~3.1!

while the appropriate volume for solute fluctuations wou
be the volume per solute molecule, (n̄ s)

21,

^~Dns!
2&; n̄ s /~ n̄ s!

21; n̄ s
2 . ~3.2!

The exact proportionalities of Eqs.~3.1! and~3.2! need to be
determined from thermodynamical or statistical mechan
arguments.

Before proceeding, we recognize that the fluctuations
the electric field and solute concentration will be correla
in both space and time. Denoting the normalized spec
density of these fluctuations in wave number~magnitudek)
and frequency space bySE$k,v%, we may expect the form o
Eq. ~3.1!, for example, to be

^~DE!2&5^~DE!2& thE
0

`E
0

`

SE$k,v%dkdv, ~3.3!

where ^(DE)2& th is the exact value of̂(DE)2& determined
from thermodynamic considerations, which we expect to
of order kBTk3/e, and the double integral has the value
unity. If the double integral is first integrated onv, the re-
sulting integrand is a function ofk denoted byKE$k%:
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3464 56J. A. FAY
E
0

`E
0

`

SE$k,v%dkdv[E
0

`

KE$k%dk. ~3.4!

Because the integration onv is equivalent to ensemble av
eraging, the normalized wave number spectral densityKE$k%
is a themodynamic quantity and not dependent upon
dissipative property of the electrolyte.

We begin first with the fluctuations of the electric fiel
We adopt the technique of Chandler and Anderson@7#, who
determined the electrical component of the free energy
unit volumea of an electrolyte as a rapidly converging seri
of terms corresponding to cluster integrals. For the particu
case of zero hard core ion radius, and employing only
first term of the series, the absolute value ofa is kBTk3/12p.
Setting this equal to the electric field energy per unit volum
e^(DE)2&/2, we have

^~DE!2&5
kBTk3

6pe E
0

`

KE$k%dk, ~3.5!

KE$k%5~3/pk!S 12
k2

k2
lnF11

k2

k2G D . ~3.6!

The wave number spectrumKE$k% of Chandler and Ander-
son, Eq.~3.6!, is plotted in Fig. 2. Note that most of th
energy is contained within the small wave number region
the spectrum,k!k. This is in contrast to the spectrum o
Oosawa@4#, for which KE}k2/k2 for small wave number,
compared withKE}12k2/k2 in Eq. ~3.6! and Fig. 2.

The spatial correlation function of the electric field m
be found from the transform ofKE$k%. To simplify this cal-
culation, we approximate the wave number spectrum of F
2 by a simple exponential:

KE$k%.~3/pk!exp„2~3/p!@k/k#… ~3.7!

that differs very little from Eq.~3.6! ~see Fig. 2!. The corre-
sponding normalized spatial correlation function is

CE$r 8%.
1

11~pkr 8/3!2
. ~3.8!

This geometric decline ofCE with kr 8 is slower than the
exponential decline of Oosawa@4#.

FIG. 2. A plot of the normalized wave number spectrumKE$k%
of the electric field as a function ofk/k.
y
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f
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The Langevin equation for the fluctuating variablesE and
ns may be derived by applying the conservation equatio
for electric and solute charge:

¹• j1
]~e¹•E!

]t
50,

¹• j s1
]~2Zens!

]t
50,

to the transport equations~2.13! and ~2.14!. The resulting
Langevin equation has the form of Eq.~2.29! with h[k2/k2.
The normalized wave-number–frequency spectr
SE$k, v% of Eq. ~3.3! becomes@see Eq.~2.30!#

SE$k,v%5KE$k%S ~2/p!~k2/k2!@11~k2/k2!#~12a2!V3

~v21v1
2!~v21v2

2!
D ,

~3.9!

where

v15
V

2
$@11~k2/k2!#1A@12~k2/k2!#214a2~k2/k2!%,

v25
V

2
$@11~k2/k2!#2A@12~k2/k2!#214a2~k2/k2!%.

~3.10!

Contours of the wave-number–frequency spectr
SE$k, v% are plotted in Fig. 3 for the case of weak couplin
a2!1; i.e., nearly equal ion mobilities. The spectral inte
sity is greatest for small values ofv/V andk/k.

For the case ofa2!1, we may determine the time corre
lation function CE$t8% by noting that v15V and
v25(k/k)2V and that as a consequence of Eq.~2.31! the
time transform ofSE$k, v% is

E
0

`

SE$k, v%cosvt8 dv.~3/pk!exp@2~3/p!~k/k!#

3exp@2~k/k!2Vt8#, ~3.11!

where we have used the approximation of Eq.~3.7!. Integrat-
ing on the wave numberk we find the time correlation

FIG. 3. Contours of the normalized wave-number–frequen
spectrum (pkV/3) SE$v, k% as a function of the reduced fre
quencyv/V and wave numberk/k for a2!1.
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CE$t8%.E
0

`E
0

`

SE$k,v%cosvt8dvdk

.
3

2ApVt8
expS F 3

2pAVt8
G 2D erfcS 3

2pAVt8
D

~3.12!

.12~2p2/9!Vt8 if Vt8!1

.
3

2ApVt8
if Vt8@1. ~3.13!

Note that the time correlation function of the electric fie
decays algebraically as (t8)21/2 rather than exponentially, a
does the spatial correlation function@Eq. ~3.8!#.

The mean square fluctuation of the solute dens
^(Dns)

2&, is determined by evaluating the contributions
the change in free energy densitya from perturbations to the
number densityni of ions in the ion configuration space. W
assume a small perturbationj5Dni /ni that will be ex-
panded as a Fourier series in configuration space. Cons
ing the solute ions as a perfect solution@8#, the free energy
per unit volume is increased by the perturbation

a$j%5ni~11j!kBT@ lnni~11j!2 f $T%#5a$0%1nikBTj2

~3.14!

since the mean value ofj is zero.
In expanding the perturbation in a Fourier series in c

figuration space, we must limit the maximum wave numb
km to a value such thatnikm

3 @1, so as to ensure that th
occupation number of a cell of volumekm

23 is large, as re-
quired by the Boltzmann statistics we use for the perf
solution. We shall call this volumel 3, and note that it is
necessarily much larger than the volume per solute molec
Excluding a volumel 3 from the configuration space of eac
molecule makes an additive contribution to the free ene
density of a perfect system ofn2kBTl 3, as in the case of a
perfect gas wherel 3 would be the second virial coefficien
@8#. For our ionic solution, the increment in free energy de
sity is therefore

Da5ni
2kBTl 3j2. ~3.15!

Comparing with Eq.~2.4!, we can solve for the mean valu
of j2:

^j2&51/nsl
3,

^~Dns!
2&5ns /l 3, ~3.16!

where we have usedni52ns . The condition thatnsl
3@1

ensures thatj!1.
We now construct a simple wave number spectrumKs$k%

of ^(Dns)
2& by requiring thatKs be proportional tok2 for

kl !1 so that each mode contributes equally to the spec
energy density, but thatKs$k%→0 rapidly forkl @1. A suit-
able normalized spectrum would be

Ks$k%5~4l 3/Ap!k2exp~2k2l 2! ~3.17!
,

er-

-
r

t

le.

y

-

al

from which we obtain the normalized spatial correlati
function Cs$r 8% from the transform ofKs$k%:

Cs$r 8%5@122~r 8!2/l 2#exp~2@r 8#2/4l 2!. ~3.18!

Repeating the steps that led to Eq.~3.12!, we find the time
correlation function for the solute density fluctuations:

Cs$t8%5S 11
Vt8

k2l 2D 23/2

. ~3.19!

Like the correlation function of the electric field@Eq. ~3.13!#,
Cs$t8% decays algebraically, as (t8)23/2.

IV. ELECTRICAL PROPERTIES OF THE CYTOPLASM
AND CELL MEMBRANE

Two electrical properties that affect the fluctuations
electric field and solute density of a cell are the electri
conductivitys and the electric permittivitye ~or the relative
permittivity e rel[e/e0, wheree0 is the vacuum permittivity!.
A summary of the empirical values ofs ande rel measured in
bulk samples of muscle, lung, liver, fat, bone, and who
blood, as a function of frequencyf [v/2p over the range 10
Hz < f <10 MHz, is given by Foster and Schwan@10#.

For all of these samples, the electrical conductivity var
only slightly with f , having values between;1022 S/m for
bone and 0.7 S/m for blood. The blood conductivity is abo
the same as that of an electrolyte having a K11Na1 ion
density of 100mmol/l, a typical value for cytoplasm and
extracellular fluid. Lower values for other samples refle
their more complex structure but indicate that the origin
the conductivity is the presence of an electrolyte suffus
the sample. The insensitivity to frequency in the measu
range also indicates the electrolytic nature of the conduc
process.

On the other hand, the relative permittivitye rel shows a
marked dependency uponf , declining from;107 at 10 Hz
to ;1032104 at 10 MHz, but remaining unchanging a
higher frequencies in some cases. These large values oe rel
at low frequencies are the result of heterogeneities in
tissue structure and the presence of cell membranes of
high electrical resistance, giving rise to a dielectric lo
~called the Maxwell Wagner loss! in bulk tissue samples
@11#. On the scale of a single cell, however, the electric p
mittivity and conductivity are independent of frequenc
over the range of frequency of consequence to the evalua
of the correlation function.

Measurement of some eukaryotic cell membrane prop
ties listed by Pethig@11# gives a median membrane capac
tance of C/A51 mF/cm2 and resistance o
RA51.23103 V cm2. Their product,RC, is the time con-
stantem /sm51.231023 s. ~This value is comparable to th
response time of the cell potential to large disturbances, a
an action potential@5#.! The relative permittivity of a mem-
brane should be about the same as that of protein, its pri
pal constituent, or (e rel)m52.7 @11#. The corresponding val-
ues of membrane permittivity and conductivity are th
em52.4310211 F/m andsm5231028 S/m, and the mem-
brane thicknessh5emA/C52.4 nm.

For the cell cytoplasm, we will use a blood conductivi
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TABLE II. RMS electric field values.

(kBT/eV)1/2 (kbTk3/6pe)1/2 (kbTk3/6pe)1/2(3/pkV1/3)
~V/m! ~V/m! ~V/m!

Cytoplasm 1.13102 1.83107 2.23103

Membrane 1.63104 4.03107 7.63104
no
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of sc51.1 S/m. Even though the cytoplasm structure is
homogeneous, the low proportion of lowe rel protein justifies
the use of a relative permittivity of watere rel578 for the
cytoplasm, orec56.9310210 F/m. The corresponding time
constant isec /sc56.3310210 s, much smaller than that fo
the membrane.

A typical solute density in the cytoplasm
ns5100 mol/m3. At a temperature of 310 K the correspon
ing cytoplasm Debye length iskc

2151.0 nm, which is much
less than a typical cell diameterd of 10mm. Assuming that
the conduction channels of the membrane constitute 1%
the membrane area, as they do in gap junctions@12#, the
average membrane ion density is aboutns51 mol/m3 and
the membrane Debye length iskm

2151.8 nm, comparable to
the membrane thickness.

If we assume that the cell is a sphere of diameter 10mm,
then the cell volumeVc55.2310216 m2 and the membrane
areaA53.1310210 m2.

These typical values of cell properties are summarized
Table I, together with the characteristic frequencyV and the
parameterh of Eqs. ~2.25! and ~2.26!. The constraint that
applies to Eqs.~2.33!–~2.36! is amply satisfied by the valu
of h listed in Table I.

In Table II we list several values of the RMS electric fie
for the membrane and cytoplasm. In the first column, we
the value for a capacitor of volumeV, Eq. ~2.7!, applied to
both cytoplasm and membrane. In the second column,
electrolyte value of Eq.~3.5! is used. In the third column, we
calculate the RMS value of the electric field correlation fun
tion evaluated for the distancer 85V1/3, the maximum di-
mension of the cytoplasm or the membrane, as determ
by Eq. ~3.8!.

Considering the cytoplasm or membrane as a unifo
electrolyte, the value of̂(Dns)

2& depends upon the choice o
the length scalel needed to ensure the applicability
Boltzmann’s statistics. If we choosensl

3510, then
A^(Dns)

2&5ns/10 for both cytoplasm and membrane. Th
is much greater than the classical value ofAns /V for fluc-
tuations averaged over the entire volumeV, as given in Eq.
~2.8!. The characteristic frequencyV/(kl )2 for the time
correlation function of Eq.~3.19! is calculated to be
1.5431023 V and 2.3631024 V for the cytoplasm and
membrane, respectively.

V. DISCUSSION

The capacitor-resistor model of the cell membrane
widely used and the RMS electric field of Eq.~2.7!, esti-
mated as 1.63104 V/m in Table II, is securely based. Wha
is different about the analysis of Sec. II is the incorporat
of the solute fluctuations in the cytoplasm due to the mo
ment of ion pairs across the membrane, which affects
t

of

in

e

e

-

ed

s

n
-
e

frequency spectrum of the electric field but not its RM
value. This solute motion is much slower than the excha
of charge since the anions are less mobile than the cat
within the membrane. The ions respond both to the elec
field and the chemical potential difference across the me
brane. The resulting electric field frequency spectrum a
time correlation function, Eqs.~2.35! and ~2.36!, are domi-
nated by this slower process, having a characteristic
quency of the order ofhVm;1 s21.

Other treatments of the frequency spectrum, such as
by Procopio and Fornes@3#, assume zero anion mobility, an
find a spectrum characterized by the frequencyVm , as in Eq.
~2.27!. While this may be a physiologically interesting po
tion of the spectrum, there is little energy content in th
region as long as the anion mobility is nonzero.

The model of Sec. II assumes that the electric poten
and solute density are uniform within the cytoplasm and
the extracellular environment, differences in these quanti
occurring only across the membrane. For uniformity ofns in
the cytoplasm, it is necessary that the time for ion pairs
diffuse throughout the cytoplasm,Vc

2/3/D ~whereD5Vc /kc
2

is the solute diffusivity!, is much shorter than the characte
istic time (hVm)21. Employing the values of Table I, th
dimensionless time ratio,h(Vm /Vc)kc

2Vc
2/35331022, sat-

isfies this condition.
The membrane electric field and the cytoplasm sol

fluctuations each possess a time-averaged free energ
kBT/2. The RMS solute concentration fluctuation
A^(Dns)

2&/ n̄ s51/An̄ sVc, calculated from the values o
Table I, is 2.331027. The ratio of the membrane RMS elec
tric field to that of the resting potential of;100 mV/h is
431024. Thus the fluctuating quantities are small compar
to their equilibrium state values.

In the uniform electrolyte of the cytoplasm, the RM
electric field of Eq.~3.5! has the estimated value of 1.83107

V/m ~see Table II!, much greater than the value for the mem
brane, but comparable to the resting electric field in
membrane. The average electric field energy iskBT/2 in each
volume 3pk23 of the cytoplasm. If this energy were sprea
over the entire volume of the cytoplasm, the RMS fie
would be considerably less~see column one of Table II!. But
the surprising result is that the RMS value of the spa
correlation function of the cytoplasm electric field for a sep
ration distanceVc

1/3, the dimension of the cytoplasm, is es
mated in Table II to be 2.23103 V/m. Thus there is substan
tial correlation of the electric field fluctuations througho
the cytoplasm, a testimony to the effect of the long ran
Coulomb forces acting on the ions.

We have noted that the correlation function of the elec
field, as derived by Oosawa@4#, decays exponentially a
exp$2kr8%, in contrast to the algebraic decay of Eq.~3.8!.
This difference stems from the form of the wave numb
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spectrumKe$k%, which in Sec. III is a declining function o
k/k ~see Fig. 2! as given by Chandler and Anderson@7#,
rather than the increasing function assumed by Oosawa
the latter case, this leads to an infinite value for^E2&.

Assuming comparable ion mobilities in the cytoplas
electrolyte, the frequency spectrum and time correlat
function of the electric field are characterized by the f
quencyVc;13109 s21.

The solute density fluctuations are substantial within
volume l 3, which we assume to be an order of magnitu
larger than the volume per solute molecule. But these fl
tuations are essentially uncorrelated over larger distances
cause the solute density correlation function decays expo
-

In

n
-

a
e
c-
e-
n-

tially. The time correlation function of these solute dens
fluctuations, which decays algebraically, is characterized
the frequencyVc /kc

2l 255.33107 s21.
The relations discussed above and treated in earlier

tions of this assume that the cytoplasm and membrane h
uniform, isotropic properties (s,e,k, etc.!. While this is
clearly not the case for the membrane, it is reasonably so
the cytoplasm. Nevertheless, for the guidance of the rea
we have listed the uniform-property values of the elect
field for both membrane and cytoplasm in Table II, for t
two models of capacitor-resistor and uniform electroly
even where they perhaps do not apply reliably.
l
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